Part Number Hot Search : 
3EZ17D5 TA4803F 20N1T 1NK60Z CM140 15454614 S7812 N5404
Product Description
Full Text Search
 

To Download MUBW30-06A7 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MUBW 30-06 A7
Converter - Brake - Inverter Module (CBI2)
21 D11 1 D12 D13 2 D14 D15 7 3 D16 14 23 24 8 NTC T7 22 D7 T1 16 15 6 T2 11 10 D2 12 D1 T3 18 17 T4 D3 T5 20 19 T6 13 D5
5 D4
4 D6
9
Three Phase Rectifier VRRM = 1600V IDAVM = 36 A IFSM = 300 A
Brake Chopper VCES = 600 V IC25 = 26 A VCE(sat) = 1.9 V
Three Phase Inverter VCES = 600 V IC25 = 50A VCE(sat) = 1.9 V
Application: AC motor drives with
q
Input Rectifier Bridge D11 - D16 Symbol VRRM IFAV IDAVM IFSM Ptot TC = 80C; sine 180 TC = 80C; rectangular; d = 1/3 TVJ = 25C; t = 10 ms; sine 50 Hz TC = 25C Conditions Maximum Ratings 1600 25 24 300 100 V A A A W
q
q
Input from single or three phase grid Three phase synchronous or asynchronous motor electric braking operation
Features
q
q
q
Symbol
Conditions
Characteristic Values (TVJ = 25C, unless otherwise specified) min. typ. max. 1.5 1.4 1.2 1 1.7 0.15 V V mA mA s 1.3 K/W
q
VF IR trr RthJC
IF = 30 A; TVJ = 25C TVJ = 125C VR = VRRM; TVJ = 25C TVJ = 125C VR = 100 V; IF = 15 A; di/dt = -15 A/s (per diode)
q
q
High level of integration - only one power semiconductor module required for the whole drive Fast rectifier diodes for enhanced EMC behaviour NPT IGBT technology with low saturation voltage, low switching losses, high RBSOA and short circuit ruggedness Epitaxial free wheeling diodes with Hiperfast and soft reverse recovery Industry standard package with insulated copper base plate and soldering pins for PCB mounting Temperature sense included
IXYS reserves the right to change limits, test conditions and dimensions.
(c) 2001 IXYS All rights reserved
1-8
105
MUBW 30-06 A7
Output Inverter T1 - T6 Symbol VCES VGES VGEM IC25 IC80 RBSOA tSC (SCSOA) Ptot Conditions TVJ = 25C to 150C Continuous Transient TC = 25C TC = 80C VGE = 15 V; RG = 33 ; TVJ = 125C Clamped inductive load; L = 100 H VCE = VCES; VGE = 15 V; RG = 33 ; TVJ = 125C non-repetitive TC = 25C Maximum Ratings 600 20 30 50 35 ICM = 60 VCEK VCES 10 180 V V V A A A s W
Equivalent Circuits for Simulation
Conduction
D11 - D16 Rectifier Diode (typ. at TJ = 125C) V0 = 1.19 V; R0 = 9 m T1 - T6 / D1 - D6 IGBT (typ. at VGE = 15 V; TJ = 125C) V0 = 0.95 V; R0 = 42 m Free Wheeling Diode (typ. at TJ = 125C) V0 = 0.89 V; R0 = 8 m T7 / D7 IGBT (typ. at VGE = 15 V; TJ = 125C) V0 = 0.99 V; R0 = 81 m Free Wheeling Diode (typ. at TJ = 125C) V0 = 1.07 V; R0 = 23 m
Symbol
Conditions
Characteristic Values (TVJ = 25C, unless otherwise specified) min. typ. max. 1.9 2.2 4.5 0.4 200 50 50 270 40 1.4 1.0 1600 94 2.3 6.5 0.6 V V V mA mA nA ns ns ns ns mJ mJ pF nC 0.7 K/W
VCE(sat) VGE(th) ICES IGES td(on) tr td(off) tf Eon Eoff Cies QGon RthJC
IC = 30 A; VGE = 15 V; TVJ = 25C TVJ = 125C IC = 0.7 mA; VGE = VCE VCE = VCES; VGE = 0 V; TVJ = 25C TVJ = 125C VCE = 0 V; VGE = 20 V
Thermal Response
Inductive load, TVJ = 125C VCE = 300 V; IC = 30 A VGE = 15 V; RG = 33
D11 - D16 Rectifier Diode (typ.) Cth1 = 0.106 J/K; Rth1 = 1.06 K/W Cth2 = 0.79 J/K; Rth2 = 0.239 K/W T1 - T6 / D1 - D6 IGBT (typ.) Cth1 = 0.156 J/K; Rth1 = 0.545 K/W Cth2 = 1.164 J/K; Rth2 = 0.155 K/W
VCE = 25 V; VGE = 0 V; f = 1 MHz VCE = 300V; VGE = 15 V; IC = 30 A (per IGBT)
Output Inverter D1 - D6 Symbol IF25 IF80 Conditions TC = 25C TC = 80C Maximum Ratings 72 45 A A
Free Wheeling Diode (typ.) Cth1 = 0.116 J/K; Rth1 = 0.973 K/W Cth2 = 0.88 J/K; Rth2 = 0.217 K/W T7 / D7
Symbol VF IRM trr RthJC
Conditions IF = 30 A; VGE = 0 V; TVJ = 25C TVJ = 125C IF = 30 A; diF/dt = -500 A/s; TVJ = 125C VR = 300 V; VGE = 0 V (per diode)
Characteristic Values min. typ. max. 1.6 1.2 25 90 V V A ns 1.19 K/W
IGBT (typ.) Cth1 = 0.077 J/K; Rth1 = 1.111 K/W Cth2 = 0.732 J/K; Rth2 = 0.279 K/W Free Wheeling Diode (typ.) Cth1 = 0.043 J/K; Rth1 = 2.738 K/W Cth2 = 0.54 J/K; Rth2 = 0.462 K/W
(c) 2001 IXYS All rights reserved
2-8
MUBW 30-06 A7
Brake Chopper T7 Symbol VCES VGES VGEM IC25 IC80 RBSOA tSC (SCSOA) Ptot Symbol Conditions TVJ = 25C to 150C Continuous Transient TC = 25C TC = 80C VGE = 15 V; RG = 68 ; TVJ = 125C Clamped inductive load; L = 100 H VCE = VCES; VGE = 15 V; RG = 68 ; TVJ = 125C non-repetitive TC = 25C Conditions Maximum Ratings 600 20 30 26 19 ICM = 30 VCEK VCES 10 95 V V V A A A s W
Characteristic Values (TVJ = 25C, unless otherwise specified) min. typ. max. 1.9 2.1 4.5 0.3 200 30 50 270 40 0.7 0.5 800 57 2.3 6.5 0.5 V V V mA mA nA ns ns ns ns mJ mJ pF nC 1.3 K/W
VCE(sat) VGE(th) ICES IGES td(on) tr td(off) tf Eon Eoff Cies QGon RthJC
IC = 15 A; VGE = 15 V; TVJ = 25C TVJ = 125C IC = 0.4 mA; VGE = VCE VCE = VCES; VGE = 0 V; TVJ = 25C TVJ = 125C VCE = 0 V; VGE = 20 V
Inductive load, TVJ = 125C VCE = 300 V; IC = 15 A VGE = 15 V; RG = 68
VCE = 25 V; VGE = 0 V; f = 1 MH z VCE = 300 V; VGE = 15 V; IC = 15 A
Brake Chopper D7 Symbol VRRM IF25 IF80 Symbol VF IR IRM trr RthJC (c) 2001 IXYS All rights reserved Conditions TVJ = 25C to 150C TC = 25C TC = 80C Conditions IF = 15 A; TVJ = 25C TVJ = 125C VR = VRRM; TVJ = 25C TVJ = 125C IF = 10 A; diF/dt = -400 A/s; TVJ = 125C VR = 300 V Maximum Ratings 600 22 15 V A A
Characteristic Values min. typ. max. 2.2 1.5 0.06 0.07 11 80 V V mA mA A ns 3.2 K/W
3-8
MUBW 30-06 A7
Temperature Sensor NTC Symbol R25 B25/50 Module Symbol TVJ TJM Tstg VISOL Md Symbol Rpin-chip dS dA RthCH Weight Dimensions in mm (1 mm = 0.0394") Creepage distance on surface Strike distance in air with heatsink compound 6 6 0.02 180 Conditions Operating Maximum Ratings -40...+125 150 -40...+125 2500 2.7 - 3.3 C C C V~ Nm Conditions T = 25C Characteristic Values min. typ. max. 4.75 5.0 3375 5.25 k K
IISOL 1 mA; 50/60 Hz Mounting torque (M5) Conditions
Characteristic Values min. typ. max. 5 m mm mm K/W g
(c) 2001 IXYS All rights reserved
4-8
MUBW 30-06 A7
Input Rectifier Bridge D11 - D16
60 A 50 IF 40 TVJ= 125C TVJ= 25C 160 A 50Hz, 80% VRRM 140 120 IFSM 100 80 60 TVJ= 125C 40 10 20 0 0.001 102 0.01 0.1 t s 1 1 2 3 4 5 6 7 ms10 89 t TVJ= 125C TVJ= 45C 103 A2s I2t TVJ= 45C
30
20
0 0.0
0.4
0.8
1.2 VF
1.6 V
2.0
Fig. 1 Forward current versus voltage drop per diode
600 W 500 Ptot 400
Fig. 2 Surge overload current
Fig. 3 I2t versus time per diode
80 A
300
200
RthA: 0.05 K/W 0.15 K/W 0.3 K/W 0.5 K/W 1 K/W 2 K/W 5 K/W
60 Id(AV) 40
20 100
0 0 20 40 60 80 100 120 A Id(AV)M 0 20 40 60 80 100 120 140 C
Tamb
0 0 20 40 60 80 100 120 140 C TC
Fig. 4 1
1.4 K/W 1.2 1.0 ZthJC 0.8 0.6 0.4 0.2
Power dissipation versus direct output current and ambient temperature, sin 8 0
Fig. 5 Max. forward current versus case temperature
DWFN17-16
0.0 0.001
0.01
0.1
1 t
s
10
Fig. 6 Transient thermal impedance junction to case (c) 2001 IXYS All rights reserved
5-8
MUBW 30-06 A7
Output Inverter T1 - T6 / D1 - D6
90
A 75 IC 90 A 75
VGE= 17V 15V 13V 11V
IC 60 45 30
9V TJ = 25C
60 45 30 15 0 0
VGE= 17V 15V 13V 11V
9V
15
TJ = 125C
0
1
2
3
4 VCE
5
V
6
0
1
2
3
4 VCE
5V
6
Fig. 7 Typ. output characteristics
Fig. 8 Typ. output characteristics
90 75 A
IC IF
90 A 75 60 45
TJ = 125C TJ = 25C
60 45 30
TJ = 125C TJ = 25C
30 15
VCE = 20V
15 0 4 6 8 10 12 VGE 14 V 16
0 0.0
0.5
1.0
VF
1.5
V
2.0
Fig. 9 Typ. transfer characteristics
Fig. 10 Typ. forward characteristics of free wheeling diode
# ns ' $
TJ = 125C VR = 300V IF = 30A
MUBW3006A7
20
V
50 40 A
IRM
15
VGE
trr
trr
30 10 20 5
VCE = 300V IC = 30A
10
IRM
!
0 0 40 80 120 QG
nC
0 160 0 200 400
600 800 A/s -di/dt
1000
Fig. 11 Typ. turn on gate charge
Fig. 12 Typ. turn off characteristics of free wheeling diode
(c) 2001 IXYS All rights reserved
6-8
MUBW 30-06 A7
Output Inverter T1 - T6 / D1 - D6
8
VCE = 300V mJ VGE = 15V
80 Jr Jd(on) Eon ns 60 t 40 Eoff
2.0
mJ
Eoff
400 ns 300
Eon
R = 33 6G TVJ = 125C
1.5
VCE = 300V VGE = 15V
t Jd(off) 200
4
1.0 RG = 33
TVJ = 125C
2
20
0.5
Jf
100
0 0 20 40
IC
0
0.0
0 20 40 IC 60 A
0
60 A
Fig. 13 Typ. turn on energy and switching times versus collector current
4
80 ns Jr Eon 40 60 t Eoff
Fig. 14 Typ. turn off energy and switching times versus collector current
2.0
400 ns 300 t
Eon
VCE = 300V mJ VGE = 15V = 30A I 3C TVJ = 125C
Jd(on)
VCE = 300V mJ VGE = 15V IC = 30A 1.5 T = 125C VJ
Jd(off)
2
1.0
Eoff
200
1
0.5
Jf
100
0 0 10 20 30 40 50 60 RG
20 70 80
0.0 0 10 20 30 40 50 60 RG
0 70 80
Fig. 15 Typ. turn on energy and switching times versus gate resistor
80
A ICM 10 K/W ZthJC 1
Fig.16 Typ. turn off energy and switching times versus gate resistor
diode IGBT
60
0.1
40
0.01
20
RG = 33 TVJ = 125C
single pulse
0.001 0.0001 0.00001 0.0001 0.001
MUBW3006A7
0 0 100 200 300 400 500 600 VCE 700 V
0.01
0.1 t
1
s 10
Fig. 17 Reverse biased safe operating area RBSOA
Fig. 18 Typ. transient thermal impedance
(c) 2001 IXYS All rights reserved
7-8
MUBW 30-06 A7
Brake Chopper T7 / D7
50
A 40 IC 20 A IF 15
TJ = 125C TJ = 25C TJ = 125C TJ = 25C
30
10
20 10
VGE = 15V
5
0 0 1 2 3 4
VCE
0
5
V6
0
1
2 VF
V
3
Fig. 19 Typ. output characteristics
Fig. 20 Typ. forward characteristics of free wheeling diode
300 ns
1.2
mJ Eoff
Jd(off)
0.8
mJ t Eoff 0.6
VCE = 300V VGE = 15V IC = 15A TVJ = 125C
400 Jd(off) ns 300 t
0.8
VCE = 300V VGE = 15V RG = 68 TVJ = 125C
200
0.4
Eoff 100
Eoff
200
0.4
Jf
0.2
Jf
100
0.0 0 5 10 15 20 25
IC
0 30 A 35
0.0
0 20 40 60 80
0 100 120 RG
Fig. 21 Typ. turn off energy and switching times versus collector current
10 K/W 1 ZthJC 0.1 R 0.01 0.001
single pulse diode IGBT
Fig. 22 Typ. turn off energy and switching times versus gate resistor
Temperature Sensor NTC
10000 1000
0.0001 0.00001 0.0001 0.001
100 0.01 0.1 t 1 s 10 0 25 50 75 100 T
MUBW3006A7
125 C 150
Fig. 23 Typ. transient thermal impedance
Fig. 24 Typ. thermistorresistance versus temperature
(c) 2001 IXYS All rights reserved
8-8


▲Up To Search▲   

 
Price & Availability of MUBW30-06A7

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X